Charts should help communicate an overarching idea or concept, very efficiently, in a short amount of space. No action items are included. It should be independent, self-explanatory, thoughtful, and illustrative. Schemes on the other hand, have action items like, reactions, physical processes. They add fluidity to the objects.

For this reason, describing a Chart/Scheme would take a fair amount of space. When integrated, a chart should fit-in seamlessly with text. Charts usually appear in the beginning (hypothesis) or toward the end (conclusion/mechanism) of a technical document. This is because they may propose a hypothesis, or a mechanism, or a central idea which is being explored, or tested, in the article.

1. Charts/Schemes summarize concepts/hypotheses from a set of investigations.
2. The central message from the chart should be extracted and presented.
3. All components of the chart should be described.
4. Greater emphasis should be placed on more important items.
5. Each idea or impact point should be addressed in separate paras.
6. Each para should be connected with the next by transitions and all paras should appear in appropriate sequence.
7. Use one line summary at the end.

Take inventory of your Chart/Scheme before writing the text:
- How many distinct parts are present?
- What are the connections between the distinct parts?
- What is the overarching idea/hypothesis?
- What details are present in each part?
- Does the Scheme consist of chemical reactions or physical processes?
- What are the conditions under which the above processes are carried out?
- What is being tested and what is already documented?
- Is there more than one example for each process described?
- How to enhance the impact of the Chart/Scheme and be lucid?
- Each Chart/Scheme should be numbered consecutively and cited in the text, in that order, at least once. Multiple citations of these will use the same number, again and again.

Assignment: Submit a written description of the Chart, or the Scheme, in 200 words.